A quasi-parafermionic realization of G_{2} and $U_{q}\left(G_{2}\right)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L383
(http://iopscience.iop.org/0305-4470/25/8/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:18

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A quasi-parafermionic realization of $\boldsymbol{G}_{\mathbf{2}}$ and $\mathrm{U}_{\boldsymbol{q}}\left(\boldsymbol{G}_{\mathbf{2}}\right)$

L Frappat $\dagger \|$ and A Sciarrino $\ddagger \mathbb{} \ddagger$
\dagger Laboratooire de physique Théorique ENSLAPPş, Groūpe d'Añecy, Chemiñ de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France
\ddagger Università di Napoli 'Federico II', Dipartimento di Scienze Fisiche, and INFN, Sezione di Napoli, I-80125 Napoli, Italy

Received 12 September 1991, in final form 30 January 1992

Abstract

We present a construction of the exceptional Lie algebra G_{2} and of the corresponding quantum algebra $\mathrm{U}_{q}\left(G_{2}\right)$ using quasi-parafermionic creation and annihilation operators and their quantum analogue. As a by-product, a new realization of $\mathrm{U}_{q}\left(A_{2}\right)$ is found.

Quantum groups, introduced in the study of integrable models, have become mathematical structures of relevant interest in many fields of physics. Explicit constructions of the quantum universal enveloping algebra, the so-called q-algebra, of $\operatorname{SU}(2)$ have been obtained by introducing the q-analogue of the harmonic oscillator boson operator [1]. Introducing also the q-analogue of the fermionic operators satisfying a q-deformed Clifford algebra, this construction has been generalized to the universal enveloping algebras of all classical Lie algebras [2], to the exceptional Lie algebras [3] except $\mathrm{U}_{q}\left(G_{2}\right)$. For this last one, only an explicit matrix realization is known [4].

In this letter we want to present a construction of G_{2} and of $U_{q}\left(G_{2}\right)$ in terms of objects which are similar to parafermions (respectively q-parafermions) but as they do not satisfy all the equations defining parafermions, we prefer to call them 'skedofermions' (from greek $\sigma \kappa \varepsilon \delta o \varsigma$ close to) in order to avoid confusion with the already existing literature on parafermions [5] and q-parafermions [6].

Let us first discuss why the construction proposed in [2,3] cannot be extended to $\mathrm{U}_{q}\left(G_{2}\right)$. For the Lie algebra G_{2} an explicit construction in terms of fermions can be obtained [7] by exploiting the embedding $G_{2} \subset B_{3} \subset D_{4}$. As G_{2} is a singular subalgebra of B_{3}, a simple root of G_{2} is a linear combination of simple roots of B_{3}, and therefore the corresponding generator is a linear combination of the generators of B_{3}. As the lack of linearity is the peculiar feature of the deformed algebras, this realization cannot be deformed in a consistent way. Let us remark that the same structure appears in the case of the Lie algebra F_{4} which is a singular subaigebra of E_{6}. The construction of this algebra in terms of fermions exploiting the embedding $F_{4} \subset E_{6}$ [7] cannot be deformed. So the construction of [3] can be seen as the deformation of the construction of F_{4} obtained by the decomposition of this algebra in its maximal subalgebra B_{4} :

$$
\begin{equation*}
52=36+16 . \tag{1}
\end{equation*}
$$

[^0]In the following, we shall present at first a realization of G_{2} in terms of fermions exploiting the decomposition in its maximal subalgebra A_{2} :

$$
\begin{equation*}
14=8+3+\overline{3} \tag{2}
\end{equation*}
$$

which is suitable to be deformed.
Let us briefly recall the realization of the algebra A_{2} in terms of fermionic operators. Let $a_{i}, a_{i}^{+}(i=1,2,3)$ be fermions satisfying

$$
\begin{equation*}
\left\{a_{i}^{+}, a_{j}^{+}\right\}=\left\{a_{i}, a_{j}\right\}=0 \quad \text { and } \quad\left\{a_{i}^{+}, a_{j}\right\}=\delta_{i j} \tag{3}
\end{equation*}
$$

The algebra A_{2} is spanned by (with $i, j=1,2,3, i \neq j$ and $k=1,2$)

$$
\begin{equation*}
a_{i}^{+} a_{j} \quad \text { and } \quad a_{k}^{+} a_{k}-a_{k+1}^{+} a_{k+1}=H_{k} \tag{4}
\end{equation*}
$$

The generators corresponding to the simple positive roots are $a_{1}^{+} a_{2}$ and $a_{2}^{+} a_{3}$ and the H_{k} form the basis of the Cartan subalgebra. With respect to this realization, the a_{i}^{+} and a_{i} transform as the $\mathbf{3}$ and the $\overline{3}$ respectively. We can get another realization of these fundamental representations in terms of bilinears in a_{i} or a_{i}^{+}using the property

$$
\begin{equation*}
\overline{\mathbf{3}}=(\mathbf{3} \times \mathbf{3})_{\mathrm{A}} \quad \text { and } \quad \mathbf{3}=(\overline{\mathbf{3}} \times \overline{\mathbf{3}})_{\mathrm{A}} \tag{5}
\end{equation*}
$$

where the subscript A denotes the antisymmetric part of the Kronecker product.
We can now realize the G_{2} algebra using as generators corresponding to the simple positive roots (index 1 is for the long root, index 2 for the short root)

$$
\begin{equation*}
E_{1}=a_{1}^{+} a_{2} \quad \text { and } \quad E_{2}=a_{2}^{+}-a_{1} a_{3} \tag{6a}
\end{equation*}
$$

and generators corresponding to the simple negative roots

$$
\begin{equation*}
F_{1}=a_{2}^{+} a_{1} \quad \text { and } \quad F_{2}=a_{2}+a_{1}^{+} a_{3}^{+} \tag{6b}
\end{equation*}
$$

with corresponding Cartan generators

$$
\begin{align*}
& H_{1}=\left[E_{1}, F_{1}\right]=a_{1}^{+} a_{1}-a_{2}^{+} a_{2} \\
& H_{2}=\left[E_{2}, F_{2}\right]=2 a_{2}^{+} a_{2}-a_{1}^{+} a_{1}-a_{3}^{+} a_{3} . \tag{7}
\end{align*}
$$

These generators satisfy the usual relations in the Chevalley basis

$$
\begin{equation*}
\left[H_{\mathrm{i}}, E_{j}\right]=a_{i j} E_{j} \quad\left[H_{\mathrm{i}}, F_{j}\right]=-a_{\mathrm{ij}} F_{j} \tag{8}
\end{equation*}
$$

where $a_{i j}$ is the G_{2} Cartan matrix

$$
\left(\begin{array}{rr}
2 & -1 \tag{9}\\
-3 & 2
\end{array}\right)
$$

It is a simple calculation to show that the Serre-Chevalley relations are verified. Indeed, they are trivially verified as each term is identically vanishing \dagger.

The fourteen elements of G_{2} will be (where $i, j, k \in\{1,2,3\}$ and summation over repeated indices is understood)

$$
\begin{array}{ll}
a_{i}^{+} a_{j}(i \neq j) & a_{i}^{+}+\frac{1}{2} \varepsilon_{i j k} a_{j} a_{k} \\
a_{1}^{+} a_{1}-a_{2}^{+} a_{2} & 2 a_{2}^{+} a_{2}-a_{1}^{+} a_{1}-a_{3}^{+} \varepsilon_{3} . \tag{10}
\end{array}
$$

Let us remark that the bosonic realization of A_{2} is not suitable to build the realization of G_{2} as the terms $\varepsilon_{i j k} a_{j} a_{k}$ and $\varepsilon_{i j k} a_{j}^{+} a_{k}^{+}$are zero for bosons.

In the realization of orthogonal Lie algebras in terms of creation and annihilation operators, the fundamental (spinorial) representations of the algebra is spanned by \dagger This happens for all the Serre-Chevaliey relations for $a_{i j}<0$ when the Lie algebra is realized in terms of fermionic operators.
the Fock space, generated by the creation operators on the vacuum state $|0\rangle$ defined as the state annihilated by all the annihilation operators, the vacuum transforming as the lowest weight state of the representation. We can also realize irreducible representations (IR) of G_{2} in the fermionic Fock space. To do this, what is relevant is the identification of a state transforming as the lowest or highest weight state. From the form of the Cartan generators (10) and the property that the fermionic number operator $N_{i}=a_{i}^{+} a_{i}$ has eigenvalues 0 or 1 on the Fock space, one finds that in the Fock space there are two states which can be candidate for the highest weight states for the trivial one-dimensional IR (in Dynkin notation (0,0)) and for the fundamental sevendimensional IR (in Dynkin notation (0,1)). The highest weight state for the (0,0) IR is

$$
\begin{equation*}
|0,0\rangle=|0\rangle+a_{1}^{+} a_{2}^{+} a_{3}^{+}|0\rangle \tag{11a}
\end{equation*}
$$

while the highest weight state of the $(0,1)$ IR is

$$
\begin{equation*}
|0,1\rangle=a_{1}^{+} a_{2}^{+}|0\rangle \tag{11b}
\end{equation*}
$$

By applying to the above state the generators corresponding to the simple negative roots ($6 b$) in the sequence $F_{2}, F_{1}, F_{2}, F_{2}, F_{1}, F_{2}$ all the states of the representation are spanned. One can easily identify the states of the representation of $A_{2} \subset G_{2}$ i.e.

$$
7=3+\overline{3}+1
$$

the IR $\mathbf{3}$ being spanned by $a_{i}^{+}|0\rangle$, the IR $\overline{\mathbf{3}}$ by $a_{i}^{+} a_{j}^{+}|0\rangle(i \neq j)$ and the trivial representation by the state given in (11a).

Let us now define

$$
\begin{equation*}
d_{i}^{+}=a_{i}^{+}+\frac{1}{2} \varepsilon_{i j k} a_{j} a_{k} \quad \text { and } \quad d_{i}=a_{i}-\frac{1}{2} \varepsilon_{i j k} a_{j}^{+} a_{k}^{+} \tag{12}
\end{equation*}
$$

which satisfy the following relations (and the HC relations) \dagger

$$
\begin{align*}
& {\left[d_{i}^{+}, d_{i}\right]=K_{i}} \tag{13a}\\
& {\left[K_{i}, K_{j}\right]=0} \\
& {\left[K_{i}, d_{j}^{+}\right]=\left(3 \delta_{i j}-1\right) d_{j}^{+}} \tag{13b}\\
& {\left[K_{i}, d_{j}\right]=-\left(3 \delta_{i j}-1\right) d_{j}} \\
& {\left[\left[d_{i}^{+}, d_{j}\right], d_{k}^{+}\right]=3 \delta_{j k} d_{i}^{+} \quad(i \neq j)} \tag{13c}\\
& {\left[\left[d_{i}^{+}, d_{j}\right], d_{k}\right]=-3 \delta_{i k} d_{j} \quad(i \neq j)} \\
& \left(d_{i}^{+}\right)^{3}=\left(d_{i}^{+}\right)^{2} d_{j}=d_{i}^{+} d_{j} d_{i}^{+}=d_{i}^{+} d_{j}^{+} d_{j} d_{i}^{+}=d_{j}^{+} d_{j}^{+} d_{i}^{+} d_{i}^{+}=d_{i}^{+} d_{j} d_{j}^{+} d_{j} d_{i}^{+}=0 \quad(i \neq j) \tag{13d}\\
& d_{i}^{+} d_{j}^{+} d_{k} d_{i}^{+}=d_{k}^{+} d_{j} d_{i} d_{i}=d_{i}^{+} d_{j} d_{k} d_{j}^{+} d_{i}^{+}=d_{i}^{+} d_{j} d_{j}^{+} d_{k} d_{i}^{+}=d_{i}^{+} d_{j} d_{j}^{+} d_{k} d_{j} d_{i}^{+} \\
& =\dot{a}_{i}^{+} \dot{a}_{j} d_{k} a_{j}^{+} a_{j} a_{i}^{+}=0 \quad(i \neq j \neq k) \tag{13e}
\end{align*}
$$

with $K_{1}+K_{2}+K_{3}=0$.
Now, forgetting the defining equations (12), we define objects satisfying (13) and we shall call them 'skedofermions' (or quasi-parafermions). Of course, one can generalize this definition to build a set of n skedofermions in connection with any A_{n} algebra.

In terms of skedofermions, we can obtain a realization of G_{2} as

$$
\begin{array}{lll}
E_{1}=\frac{1}{3}\left[d_{1}^{+}, d_{2}\right] & \text { and } & E_{2}=d_{2}^{+} \\
F_{1}=\frac{1}{3}\left[d_{2}^{+}, d_{1}\right] & \text { and } & F_{2}=d_{2} \\
H_{1}=\frac{1}{3}\left(K_{1}-K_{2}\right) & \text { and } & H_{2}=K_{2} . \tag{14c}
\end{array}
$$

Now we can restate the previously obtained results on the irs in terms of skedofermion space. In reference [5], it has been shown that a vacuum state can be introduced for parafermions. Then the Fock space is spanned by monomials in the creation parafer-

[^1]mionic operators and the ring of parafermions is proved to be irreducible. A key point in these proofs is $(4.1)_{1}$ of [5], which, up to a numerical factor $\frac{2}{3}$, corresponds to our (13c). So, we can prove, along the same lines, analogous results for skedofermions. However, due to the peculiar realization of the generators of G_{2} as commutator of skedofermions, the vacuum state cannot be a candidate to a lowest or highest weight state, which, as we have already remarked, is the really relevant condition to verify. One can check that if $|V\rangle$ is a vector in the Fock space of skedofermions, eigenvector of K_{1} and K_{2}, such that $|\Omega\rangle=d_{3}^{2}|V\rangle \neq 0$, then due to (12) $|\Omega\rangle$ is the highest weight state of the representation (0,1), up to an irrelevant constant shift in the Cartan generators eignevalues and all the states of the IR are obtained by applying the F_{i} in the above sequence.

Now we define q-skedofermions ψ_{i}^{+}, ψ_{i} (i.e. quantum analogue of skedofermions) by the following relations (and the $\mathbf{H C}$ relations) which have the property to reduce to (13) for $q=1$ and which are analogous of the equations defining q-fermions [2]:

$$
\begin{align*}
& {\left[\psi_{i}^{+}, \psi_{i}\right]=\left[K_{i}\right]_{q^{2}}} \tag{15a}\\
& {\left[K_{i}, \psi_{j}^{+}\right]=\left(3 \delta_{i j}-1\right) \psi_{j}^{+} \quad\left[K_{i}, \psi_{j}\right]=-\left(3 \delta_{i j}-1\right) \psi_{j}} \tag{15b}\\
& {\left[K_{i}, K_{j}\right]=0} \tag{15c}\\
& {\left[\left[\psi_{i}^{+}, \psi_{j}\right]_{q}^{-2}, \psi_{k}^{+}\right]=3 \delta_{j k} q^{2 K_{j}} \psi_{i}^{+} \quad\left[\left[\psi_{i}^{+}, \psi_{j}\right]_{\left.q^{-2}, \psi_{k}\right]=-3 \delta_{i k} \psi_{j} q^{2 K_{i}} \quad(i \neq j)}^{\left(\psi_{i}^{+}\right)^{3}=\left(\psi_{i}^{+}\right)^{2} \psi_{j}=\psi_{i}^{+} \psi_{j} \psi_{i}^{+}=\psi_{i}^{+} \psi_{j}^{+} \psi_{j} \psi_{i}^{+}=\psi_{j}^{+} \psi_{j}^{+} \psi_{i}^{+} \psi_{i}^{+}}\right.} \tag{15d}\\
& \quad=\psi_{i}^{+} \psi_{j} \psi_{j}^{+} \psi_{j} \psi_{i}^{+}=0 \quad(i \neq j) \\
& \begin{array}{l}
\psi_{i}^{+} \psi_{j}^{+} \psi_{k} \psi_{i}^{+}= \\
\quad \psi_{k}^{+} \psi_{j} \psi_{i} \psi_{i}=\psi_{i}^{+} \psi_{j} \psi_{k} \psi_{j}^{+} \psi_{i}^{+}=\psi_{i}^{+} \psi_{j} \psi_{j}^{+} \psi_{k} \psi_{i}^{+} \\
\quad=\psi_{i}^{+} \psi_{j} \psi_{j}^{+} \psi_{k} \psi_{j} \psi_{i}^{+}=\psi_{i}^{+} \psi_{j} \psi_{k} \psi_{j}^{+} \psi_{j} \psi_{i}^{+}=0 \quad(i \neq j \neq k)
\end{array} \tag{15e}
\end{align*}
$$

where

$$
\begin{equation*}
[K]_{q^{2}}=\frac{q^{2 K}-q^{-2 K}}{q^{2}-q^{-2}} \tag{16}
\end{equation*}
$$

and the q-commutator of two operators A and B is defined by

$$
\begin{equation*}
[A, B]_{q}=A B-q B A . \tag{17}
\end{equation*}
$$

From (15d) and the identity

$$
\begin{equation*}
[A, B]=\frac{q^{-1}[A, B]_{q^{2}}+q[A, B]_{q^{-2}}}{q+q^{-1}} \tag{18}
\end{equation*}
$$

it follows that

$$
\begin{array}{ll}
{\left[\left[\psi_{i}^{+}, \psi_{j}\right], \psi_{k}^{+}\right]=3 \delta_{j k}\left\{K_{j}\right\}_{q^{2}} \psi_{i}^{+}} & (i \neq j) \\
{\left[\left[\psi_{i}^{+}, \psi_{j}\right], \psi_{k}\right]=-3 \delta_{i k} \psi_{j}\left\{K_{i}\right\}_{q^{2}}} & (i \neq j) \tag{19b}
\end{array}
$$

where

$$
\begin{equation*}
\{K\}_{q^{2}}=\frac{q^{2 K+1}+q^{-2 K-1}}{q+q^{-1}} \tag{20}
\end{equation*}
$$

Notice that $(19 a, b)$, up to a numerical factor $\frac{2}{3}$, are also satisfied by q-fermions replacing the operator K_{i} by the fermionic number operator N_{i}.

It is well known that ordinary fermions satisfy the relations of the q-Clifford algebra due to the property that the square of N_{i} is equal to N_{i}. As $K_{i}^{2} \neq K_{i}, q$-skedofermions are different from skedofermions. It is even almost evident that replacing in (12) the
fermions by \boldsymbol{q}-fermions does not define \boldsymbol{q}-skedofermions; one can wonder if skedofermions can be realized in terms of more complicated expressions of q-fermions. This is not apparently the case (even we do not have a general proof) if we require in particular (15) to hold.

Let us recall the definition of a quantum enveloping algebra $\mathrm{U}_{q}(G)$ associated with a simple Lie algebra G of rank r. Mathematically, the quantum enveloping algebra $\mathrm{U}_{q}(G)$ is a Hopf algebra with unit 1 and generators $E_{i}, F_{i}, H_{i}(1 \leqslant i \leqslant r)$ defined through the commutation relations in the Chevalley basis

$$
\begin{align*}
& {\left[H_{i}, H_{j}\right]=0 \quad\left[H_{i}, E_{j}\right]=a_{i j} E_{j} \quad\left[H_{i}, F_{j}\right]=-a_{i j} F_{j} \quad(21 a, b, c)} \\
& {\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{q^{2 d_{i} H_{i}}-q^{-2 d_{i} H_{i}}}{q^{2 d_{i}}-q^{-2 d_{i}}}} \tag{21d}
\end{align*}
$$

and the quantum Serre-Chevalley relations (for $\boldsymbol{i} \neq \boldsymbol{j}$)

$$
\begin{align*}
& \sum_{0 \leqslant n \leqslant 1-a_{i j}}(-1)^{n}\left[\begin{array}{c}
1-a_{i j} \\
n
\end{array}\right]_{q^{2 d_{i}}}\left(E_{i}\right)^{1-a_{i j}-n} E_{j}\left(E_{i}\right)^{n}=0 \tag{22a}\\
& \sum_{0 \leqslant n \leqslant 1-a_{i j}}(-1)^{n}\left[\begin{array}{c}
1-a_{i j} \\
n
\end{array}\right]_{q^{2 d_{i}}}\left(F_{i}\right)^{1-a_{i j}-n} F_{j}\left(F_{i}\right)^{n}=0 \tag{22b}
\end{align*}
$$

where $\left(a_{i j}\right)(1 \leqslant i, j \leqslant r)$ is the Cartan matrix of the Lie algebra G, and d_{i} are non-zero integers, with greatest common divisor equal to one, such that $d_{i} a_{i j}=d_{j} a_{j i}$. Note that in the case of G_{2} with Cartan matrix (9), one has $d_{1}=3$ and $d_{2}=1$.

The q-binomial coefficients $\left[\begin{array}{c}m \\ n\end{array}\right]_{q}$ are defined by
$\left[\begin{array}{l}m \\ n\end{array}\right]_{q}=\frac{[m]_{q}!}{[m-n]_{q}![n]_{q}!} \quad$ with $[m]_{q}!=[m]_{q} \ldots[1]_{q}$ and $[m]_{q}=\frac{q^{m}-q^{-m}}{q-q^{-1}}$.
One needs also to introduce a comultiplication Δ, a co-unit ε and an antipode S such that

$$
\begin{align*}
& \Delta\left(H_{i}\right)=1 \otimes H_{i}+H_{i} \otimes 1 \\
& \Delta\left(E_{i}\right)=E_{i} \otimes q^{-H_{i}}+q^{H_{i}} \otimes E_{i} \quad \Delta\left(F_{i}\right)=F_{i} \otimes q^{-H_{i}}+q^{H_{i} \otimes F_{i}} \\
& \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=\varepsilon\left(H_{i}\right)=0 \quad \varepsilon(1)=1 \tag{24}\\
& S\left(E_{i}\right)=-q^{-H_{i}} E_{i} q^{H_{i}} \quad S\left(E_{i}\right)=-q^{-H_{i} E_{i} q^{H_{i}} \quad S\left(H_{i}\right)=-H_{i} .}
\end{align*}
$$

Then we can prove the following statement:
Proposition. A realization of the generators of $\mathrm{U}_{q}\left(G_{2}\right)$ is given by

$$
\begin{array}{ll}
E_{1}=\frac{1}{\sqrt{3} \sqrt{q^{4}+q^{-4}+1}}\left[\psi_{1}^{+}, \psi_{2}\right]_{q^{-2}} & E_{2}=\psi_{2}^{+} \\
F_{1}=\frac{1}{\sqrt{3} \sqrt{q^{4}+q^{-4}+1}}\left[\psi_{2}^{+}, \psi_{1}\right]_{q^{2}} & F_{2}=\psi_{2} \\
H_{1}=\frac{1}{3}\left(K_{1}-K_{2}\right) & H_{2}=K_{2} . \tag{25c}
\end{array}
$$

Proof. Equations (21a-c) are just the defining equations ($15 b, c$).
Equation (21d) for $i=j=2$ reduces to (15a) with $i=2$ and finally (21d) for $i=j=1$ is a consequence of equations ($15 a-d$) and of the identity $q^{6}-q^{-6}=$ $\left(q^{2}-q^{-2}\right)\left(q^{4}+q^{-4}+1\right)$.

Now we have to verify the quantum Serre-Chevalley relations (22). Equation (22a) reads for $a_{12}=-1$

$$
\begin{align*}
\sum_{n=0}^{2}(-1)^{n}\left[\begin{array}{l}
2 \\
n
\end{array}\right]_{q^{6}}\left(E_{1}\right)^{2-n} E_{2}\left(E_{1}\right)^{n} & =\left[E_{1},\left[E_{1}, E_{2}\right]_{q^{-6}}\right]_{q^{6}} \\
& =E_{1}^{2} E_{2}-\left(q^{6}+q^{-6}\right) E_{1} E_{2} E_{1}+E_{2} E_{1}^{2} \tag{26}
\end{align*}
$$

and for $a_{21}=-3$

$$
\begin{align*}
& \sum_{n=0}^{4}(-1)^{n}\left[\begin{array}{l}
4 \\
n
\end{array}\right]_{q^{2}}\left(E_{2}\right)^{4-n} E_{1}\left(E_{2}\right)^{n}=\left[E_{2},\left[E_{2},\left[E_{2},\left[E_{2}, E_{1}\right]_{q^{-2}}\right]_{q^{2}}\right]_{q^{-2}}\right]_{q^{2}} \\
&=E_{2}^{4} E_{1}-\left[\begin{array}{l}
4 \\
1
\end{array}\right]_{q^{2}} E_{2}^{3} E_{1} E_{2}+\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q^{2}} E_{2}^{2} E_{1} E_{2}^{2}-\left[\begin{array}{l}
4 \\
3
\end{array}\right]_{q^{2}} E_{2} E_{1} E_{2}^{3}+E_{1} E_{2}^{4} \tag{27}
\end{align*}
$$

Now, if we write the rhs of equations (26) and (27) in terms of $\psi_{1}^{+}, \psi_{2}^{+}$and ψ_{2}, one can easily prove that each term identically vanishes using equations (15e) and (15f), so that the quantum Serre-Chevalley relations are satisfied.

The proof of ($22 b$) is evidently in the same spirit, using the $\mathbf{H C}$ relations of (15e) and ($15 f$). In the Fock space of q-skedofermions one can realize the fundamental representation of $U_{q}\left(G_{2}\right)$ by introducing the q-analogue of the $|V\rangle$ vector such that $\psi_{3}^{2}|V\rangle \neq 0$. From (15) one can see that this vector is annihilated by E_{1}, E_{2} and that non-vanishing vectors can only be obtained by applying the $F_{i}(i=1,2)$ generators in the above specified sequence, so obtaining a seven-dimensional representation.

Notice that, in this construction, a key point is the definition of the q-skedofermions given by (15). Of course, this definition is not unique as the requirement to recover equations (13) for $q=1$ is indeed very weak and the criterion of 'close analogy' of the deformation of fermions is mathematically rather badly defined. We have found a consistent deformation which is suitable for the construction of $\mathrm{U}_{q}\left(G_{2}\right)$. Moreover, one can use these q-skedofermions to build a new realization of $\mathrm{U}_{q^{\prime}}\left(A_{2}\right)$ (with $q^{\prime}=q^{3}$) which has the following structure:
$E_{1}=\frac{1}{\sqrt{3} \sqrt{q^{4}+q^{-4}+1}}\left[\psi_{1}^{+}, \psi_{2}\right]_{q^{-2}} \quad E_{2}=\frac{1}{\sqrt{3} \sqrt{q^{4}+q^{-4}+1}}\left[\psi_{2}^{+}, \psi_{3}\right]_{q^{-2}}$
$F_{1}=\frac{1}{\sqrt{3} \sqrt{q^{4}+q^{-4}+1}}\left[\psi_{2}^{+}, \psi_{1}\right]_{q^{2}} \quad F_{2}=\frac{1}{\sqrt{3} \sqrt{q^{4}+q^{-4}+1}}\left[\psi_{3}^{+}, \psi_{2}\right]_{q^{2}}$
$H_{1}=\frac{1}{3}\left(K_{1}-K_{2}\right)$

$$
\begin{equation*}
H_{2}=\frac{1}{3}\left(K_{2}-K_{3}\right) . \tag{28b}
\end{equation*}
$$

Using (15), it is easy to verify that (21) hold and that the quantum Serre-Chevalley relations (22) are satisfied.

References

[1] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873 Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581 Chang-Pu Sun and Hong-Chen Fu 1989 J. Phys. A: Math. Gen. 22 L983
[2] Hayashi T 1990 Commun. Math. Phys. 127129
[3] Frappat L, Sciarrino A and Sorba P 1991 J. Phys. A: Math. Gen. 24 L179
[4] Reshetekhin N Yu 1988 Quantified universal enveloping algebras, the Yang-Baxter equation and invariants of links, II LOMI preprint
[5] Ohnuki Y and Kamefuchi S 1982 Quantum Field Theory and Parastatistics (Berlin: Springer)
[6] Floreanini R and Vinet L 1990 J. Phys. A: Math. Gen. 23 L1019
[7] Sciarrino A 1989 J. Math. Phys. 301674

[^0]: § URA 14-36 du C̄NR̄, associée à l'Ecole Normale Supérieure de L̄yon et au Laboratoire d'Annecy-le-Vieux de Physique des Particules (IN2P3).
 || E-mail: Bitnet FRAPPAT@FRLAPP51.
 \| E-mail: SCIARRINO@NA.INFN.IT.

[^1]: \dagger One can find other relations of type ($13 e, f, g$) using the defining equation (12). Actually, it is easy to convince oneself that monomials in d_{i}^{+}and $d_{i}(i=1,2,3)$ are identically vanishing if their degree is sufficiently large. These relations have the property to be preserved by the q-deformation defined by equation (15).

